加法交换律教案设计(加法交换律和结合律)

100次浏览     发布时间:2024-10-27 09:49:30    

运算定律


一、【教学内容】

运算定律

二、【教材分析】

1、有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。

2、从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。

3、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。

三、【教学目标】

1、引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3、感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

四、【教学重、难点】

重点:探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。

难点:探索和理解加法的乘法的运算定律,会应用它们进行一些简便运算。

五、【教学策略】

1、充分利用学生已有的感性认识,促进学习的迁移。

2、加强数学与现实世界的联系,促进知识的理解与应用。

3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。


教学课题

加法交换律和结合律

教学目标

1、知识与技能:①结合具体的情境,引导学生认识和理解加法交换律和结合律的含义。

2、过程与方法:能用字母式子表示加法交换律和结合律,初步学会应用加法交换律和结合律进行一些简便运算。

3、情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②培养学生观察,比较,抽象,概括的初步思维能力。

教学重点与难点

1.重点:认识和理解加法交换律和结合律的含义。

2.难点:引导学生抽象概括加法交换律和加法结合律。

教学准备及手段

多媒体课件

课型

新授课

教学流程

1.引入谈话。

在我们班里,有多少同学会骑车?你最远骑到什么地方?

骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢! (多媒体演示:李叔叔骑车旅行的场景。)

2.获得信息。

问:从中你可以得到哪些信息? (学生同桌交流,然后全班汇报。)

问题是什么?

3.解决问题。

问:能列式计算解决这个问题吗? (学生自己列式并口答。)

1.加法交换律。

(1)解决例1的问题。 根据学生回答板书:

40+56=96(千米) 56+40=96(千米)

问:两个算式都表示什么?得数怎样?○里填什么符号?

40+56○56+40,

(2)你能照样子再举几个例子吗?

(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。

(4)反馈交流。 两个加数交换位置,和不变。

(5)揭示定律。

问:①知道这条规律叫什么吗?

②把加数换成其他任意的数,交换律还成立吗?

③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)

④交流反馈,然后看书:看看课本上的小朋友是怎么说的。

⑤根据加法交换律对口令。

师:25+65=______ 78+64=______

⑥完成课本第18页下面的“做一做”1

2.加法结合律。

多媒体展示:李叔叔三天骑车的路程统计。

(1)找出信息解决问题。 问:你能解决李叔叔提出的问题吗? 学生独立完成后交流。

多媒体展示线段图:根据学生列出的不同算式,表示三天路程的线段先后出现。

问:通过线段图的演示,你们发现什么?(不论哪两天的路程先相加,总长度不变。)

我们来研究把三天所行路程依次连加的算式,可以怎样计算:

比较88+104+96 88+104+96

=192+96 =88+200

=288 =288

为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)

出示(88+104)+96○88+(104+96),怎么填?

(2)你能再举几个这样的例子吗?

问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的话来说。)

(3)揭示规律。

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。

用符号表示。(学生独立完成,集体核对。)

(▲+★)+●=____+(____+____)

(a+b)+c=____+(____+____)

(4)问:①用语言表达与用字母表示,哪一种更一目了然?

②这里的a、b、c可以表示哪些数?

(5)完成P18做一做2

1.指出下面哪几道题运用了加法运算定律,分别运用了什么运算定律。

(1) 验算:(运用了加法交换律)

(2)用“凑十法”7+9=6+(1+9)(运用了加法结合律)

(3)教材练习五

1.今天我们发现了哪些数学规律? 2.这些运算定律是怎样发现、归纳的?

3.对于加法的交换律、结合律的应用,我们已经知道的有哪些?

相关文章